我如何使用开源工具构建了一个趋势跟踪机器人

想更深入了解开源交易框架?请查看我们的详细评测和对比。 为什么选择趋势跟踪? 在构建任何机器人之前,我想要一个简单、稳健且经过验证的策略。趋势跟踪满足所有条件——它基于价格动量,适用于各种市场。核心思想很简单: 当价格高于移动平均线时买入,低于时卖出。 考虑到这一点,我仅使用开源工具构建了完整的交易流程。 我使用的工具 Backtrader – 用于回测和策略逻辑 CCXT – 用于实时交易API接入(币安) Pandas/NumPy – 用于数据处理 Python – 用于连接代码和脚本编写 Screen – 用于在VPS或树莓派上运行机器人 逐步构建流程 1. 策略逻辑(Backtrader) ///python class TrendStrategy(bt.Strategy): def init(self): self.sma = bt.indicators.SimpleMovingAverage(period=50) def next(self): if self.data.close[0] > self.sma[0] and not self.position: self.buy() elif self.data.close[0] < self.sma[0] and self.position: self.sell() /// 我保持策略简洁:当价格突破50期简单移动平均线时买入,跌破时卖出。 2. 回测 利用通过CCXT下载的币安历史数据,我对BTC/USDT几个月的数据进行了测试。评估了: 胜率 最大回撤 盈利因子 3. 使用CCXT进行实盘交易 ///python import ccxt exchange = ccxt.binance({ ‘apiKey’: ‘YOUR_API_KEY’, ‘secret’: ‘YOUR_SECRET’, ’enableRateLimit’: True }) ...

六月 10, 2025 · 1 分钟

回测 vs 实盘交易:开源交易者必须了解的关键要点

回测和实盘交易是算法交易的两面。无论你使用的是 Backtrader、Freqtrade,还是 QuantConnect Lean,了解这两个阶段的区别——以及其中的注意事项——都是至关重要的。 什么是回测? 回测 是在历史市场数据上模拟交易策略,以评估其表现的过程。 目标: 无需投入真实资金即可测试交易想法 优点: 快速迭代,可洞察潜在亏损与盈利能力 工具: 大多数开源平台都内置强大的回测引擎 ✅ 可以把它看作策略实验室 —— 没有真实资金,没有真实后果。 什么是实盘交易? 实盘交易 是在真实或模拟的交易环境中运行策略,使用实时市场数据,并可选择是否执行真实交易。 目标: 在真实市场条件下实时执行策略 选项: 模拟交易(paper trading)或真实资金交易 工具: 大多数平台都可对接经纪商或交易所的 API 🟡 这是现实世界 —— 延迟、滑点和执行质量非常关键。 开源交易者需注意的关键点 1. 数据质量 回测: 通常能获得干净、完整的数据集 实盘交易: 实时数据可能存在噪声、延迟或不完整的情况 💡 确保历史数据能尽可能反映真实市场条件(如滑点、漏掉的 tick)。 2. 执行环境 回测: 交易“虚拟”且立即完成,价格完美 实盘交易: 存在网络延迟、部分成交、交易所行为差异等问题 💡 在回测中加入现实假设,例如延迟、手续费、买卖差价等。 3. 策略行为 一些策略在理论中表现良好,但在实际运行中失败,原因可能包括: 对历史数据过拟合 对订单执行速度敏感 忽略实际交易约束(如手续费、保证金、仓位限制) 💡 务必在极端或恶劣市场条件下对逻辑进行压力测试。 4. 滑点与延迟 滑点: 实际成交价格与预期价格之间的差异 延迟: 从信号生成到实际下单之间的时间延迟 💡 回测系统可能会模拟这些因素,但实盘交易中将直面这些挑战。 5. 风险管理 回测阶段可用于建模风险 实盘交易将揭示真实风险 💡 始终使用止损、仓位控制和熔断机制 —— 并在测试中也要验证它们的效果。 ...

五月 26, 2025 · 1 分钟
 简体中文